
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 25, 407±420 (1997)

A DEFORMING FINITE ELEMENT MESH FOR USE IN MOVING

ONE-DIMENSIONAL BOUNDARY WAVE PROBLEMS

C. D. CHRISTIAN1* AND G. N. PALMER2

1 Department of Civil and Resource Engineering, University of Auckland, Auckland, New Zealand
2 Environment Waikato, Hamilton East, New Zealand

SUMMARY

The ®nite element method is developed to solve the problem of wave run-up on a mild, plane slope. A novel
approach to implementing a deforming mesh of one-dimensional, three-node, isoparametric elements is
described and demonstrated. The discrete time interval (DTI), arbitrary Lagrangian±Eulerian (ALE) and space±
time element (STE) methods are used to solve the unsteady one-dimensional shallow water wave equations. The
boundary condition required is simply the seaward water surface elevation, and although the method has only
been tested for monochromatic waves, it should be equally valid for any sea state which can be described as a
water surface elevation as a function of time. All three solution methods are shown to given good results. Time
histories of the terms of the governing equations are calculated and used to demonstrate how the ALE and STE
methods account for mesh deformation. The model could be extended to two dimensions, which would have
practical application to the run-up of obliquely incident waves. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical modelling of wave run-up involves boundary movement as the computation advances in

time. The calculation procedure is typically

(i) calculate the position of the moving boundary (water surface and=or run-up tip)

(ii) discretize the spatial domain of the region being modelled (®nite difference grid or ®nite

element mesh) and

(iii) solve the equations governing ¯ow within the region, typically one or two dimensions,

de®ned by the moving boundary.

Since the position of the boundary is dependent on the near-®eld ¯ow regime, which in turn is

dependent on the former, an iterative calculation procedure is required at each time step.

Many models are characterized by a ®xed one-dimensional ®nite difference grid on which the

unsteady shallow water wave equations are solved. These equations are based on the assumptions that

the slope is mild and impermeable and the water pressure is hydrostatic. Kobayashi et al.,1 Allsop et

al.2 and Van der Meer and Breteler3 have demonstrated good results with this approach, even for
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relatively steep slopes. They de®ne a grid larger than the maximum expected size of the spatial

domain before computations start and then solve the governing equations at the nodes that are `wet'

during the time step under consideration. A Eulerian reference system is used which is comparable

with that normally used for ®xed boundary problems.

One drawback of this approach is that the grid cannot be re®ned at locations of interest, such as the

run-up tip, without re®ning it everywhere else. Further, the Courant stability criterion dictates that the

run-up tip must not move a distance greater than one grid interval during each time step. This requires

a high grid resolution in both the space and time domains in order to model its position accurately.

A deforming mesh of ®nite elements can overcome these limitations, largely because of its

inherent co-ordinate transformation capability. Gopalakrishnan and Tung4 describe one such

approach in which nodes and elements are added to the mesh as the run-up tip moves along the slope.

Only uprush is modelled, apparently because their model cannot deal with the removal of nodes

which would be necessary during downrush.

This paper describes a novel approach to implementing a deforming ®nite element mesh in which

the number of elements within the mesh remains constant. One advantage is that the global element

matrix does not need to be restructured at each time step, making the solution method more ef®cient.

A node is positioned at the run-up tip and allowed to move with it. At the same time the mesh is

allowed to deform and some or all internal nodes move, termed rezoning.

The discrete time interval (DTI), arbitrary Lagrangian±Eulerian (ALE) and space±time element

(STE) methods are used to solve the unsteady one-dimensional shallow water wave equations. Each

method treats the solution as an initial value problem at each time step. The mesh-rezoning scheme is

demonstrated by simulating wave run-up on a smooth, mild slope. The manner in which the

governing equations account for mesh deformation is discussed by calculating and comparing time

series of the terms of the continuity equation. The work forms part of an attempt to model wave run-

up on the seaward face of a rubble mound breakwater.8

2. GOVERNING EQUATIONS

The problem being modelled is shown in Figure 1. It is assumed that the slope is smooth and

impermeable, the ¯uid pressure is hydrostatic and the vertical ¯uid particle accelerations equal zero.

In accordance with these assumptions the equations to be solved are the unsteady one-dimensional

shallow water wave equations. These consist of the continuity equation

@
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�h� Z� � U

@

@x
�h� Z� � �h� Z� @U
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and the momentum equation
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where Z is the water surface deviation from the mean level, U is the depth-averaged horizontal

velocity and g is the acceleration due to gravity.

The boundary conditions are

Z � f �t� �3�
at the seaward boundary and

U � UR �4�
at the run-up tip, where UR is the horizontal velocity of the run-up tip.
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3. BOUNDARY MOVEMENT

An iterative procedure is used at each time step in which

UR � Ui
R �5�

at the ®rst iteration at t � ti�1 and

UR � dXR=dt �6�
with

XR � f �ZR� �7�
at subsequent iterations, where ZR is the elevation of the run-up tip (Figure 1). Equation (6) is solved

numerically using the time-marching y-method9 and equation (7) is a kinematic condition requiring

the run-up tip to move along the surface of the slope. Iterations continue at each time step until

satisfactory convergence is achieved for the position of the run-up tip.

4. MESH REZONING

4.1. Node movement

Computations begin by discretizing the region between the seaward boundary and run-up tip with a

mesh of one-dimensional ®nite elements. The length of the spatial domain changes at subsequent

time steps as a result of moving the node at the run-up tip. Some or all internal nodes are also moved,

distributing the change in length over some or all elements. This part of the mesh is referred to as the

variable length zone.

In selecting a mesh-rezoning scheme for this type of model, the effect that node movement has on

related computations must be considered. For example, global derivatives and the size of the domain

of integration must be recomputed for an element every time the nodes directly connected to it move.

To minimize computational time, nodes should be moved only when necessary.

Figure 1. Numerical modelling of wave run-up on a smooth, plane slope
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Two types of criterion are generally available for mesh rezoning and both are used in the model

described here. The ®rst treats nodes as Lagrangian markers which track individual ¯uid particles.

This criterion is applied to the node at the run-up tip along with other user-selected nodes. The second

uses a geometrical criterion with the objectives of reducing relative element distortion and retaining

locally re®ned portions of the mesh. This is generally easier to satisfy than the former criterion

because some tolerance on node position is permitted. A second advantage is that node movement,

and hence computational time, is minimized.

4.2. Node types

To facilitate mesh rezoning, each node is classi®ed before computations begin as one of the four

types listed in Table I. This classi®cation identi®es the nodes which are permitted to move and

remains constant during computations. The particular combination of node types also controls how

the mesh deforms.

A type E1 node is permanently ®xed in position and maintains the horizontal co-ordinate that was

calculated or speci®ed as part of the initial conditions. The node at the seaward boundary must be

speci®ed as an E1 node because the measured or calculated time series data used as the boundary

condition are de®ned at ®xed points in space.

For each of the type E2 nodes the potential horizontal distance moved by the jth global node, dj, is

computed by linear interpolation within the mesh. The model automatically determines which of the

type E2 nodes actually move at each time step by comparing the value of dj with what is termed here

the node position tolerance d. The value of d is speci®ed by the user before computations begin and is

constant both spatially and temporally. As depicted in Figure 2, if jdjj5d, then the node is moved a

distance dj. This avoids node movement that would increase computational time without signi®cantly

improving the distribution of nodes. The use of d is equivalent to placing a tolerance on node

position.

In most situations it is desirable to have the mesh ®nely discretized in the vicinity of the run-up tip

so that its motion is modelled accurately. This can be achieved by de®ning some nodes adjacent to

the run-up tip as type E3 nodes which move the same distance and in the same direction as the node at

the run-up tip. Mesh deformation is then accommodated elsewhere, permitting a time-invariant node

spacing to be retained next to the run-up tip. This is an improvement on the mesh-rezoning schemes

used by Lynch and Gray6 and Gopalakrishnan and Tung4 in which the node spacing next to the run-

up varied with time.

Type E4 nodes are Lagrangian markers attached to ¯uid particles. Their co-ordinates are calculated

by integrating

dX=dt � U �8�
using the y-method.

Table I. De®nition of node types and rezone codes

Node type Description Rezone code

E1 Fixed in position 0
E2 Movement of jth global node permitted subject to following criteria:

if jdjj < d, then retain current position 2
if jdjj5d, then move node 1

E3 Moved same distance and in same direction as node at run-up tip 1
E4 Lagrangian node 1

410 C. D. CHRISTIAN AND G. N. PALMER

INT. J. NUMER. METH. FLUIDS, VOL 25: 407±420 (1997) # 1997 by John Wiley & Sons, Ltd.



The four node types give the user considerable choice in how the mesh deforms. If, however, the

mesh is too coarse at a location where the velocity gradient is high, then node spacings could

inadvertently reduce to zero. This error condition is checked at each time step immediately after mesh

rezoning and, if detected, computations are automatically terminated. It can be avoided in subsequent

simulations by reducing the value of d, re®ning the mesh or introducing a set of type E3 nodes.

4.3. Recalculation of co-ordinate-dependent variables

To minimize recalculation of co-ordinate-dependent variables such as global co-ordinates, nodal

co-ordinates are compared at adjacent time steps. If they differ, then this indicates that the element

has deformed since the last time the recalculations were performed and hence must be repeated.

If the DTI method is being used, then previous time step values of Z and U must also be

interpolated (Figure 3). To facilitate this, the rezone codes shown in Table I are de®ned. These codes

are both assigned and updated automatically during computations. A rezone code equal to 0 is

associated with the type E1 nodes which are permanently ®xed in position. This indicates that

interpolation is not required since the nodes do not move. In comparison, any node that is moved is

assigned a rezone code equal to 1, indicating that interpolation is required at that node. A rezone code

equal to 2 indicates that although the node is a type E2 node, it has not been moved during the

previous time step or iteration. Consequently, interpolation is not necessary. During computations the

rezone code of a type E2 node will therefore alternate between values of 1 and 2.

Figure 2. Effect of d on movement of type E2 nodes

Figure 3. Mesh rezoning for DTI method
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5. SOLUTION METHODS

The Galerkin weighted residual method9 is used to solve (1) and (2). These are written in weighted

residual form for an element as�
O
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� �
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� �
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where o is a weighting function and O is the domain of integration. The Bubnov±Galerkin method is

used in which the weighting functions are the same type as the basis (shape) functions.

Quadratic basis functions with c0 continuity are used in the spatial domain along with three-point

Gauss±Legendre numerical integration. In addition, the STE method uses linear basis functions with

the two-point Gauss±Legendre integration in the time domain.

5.1. DTI method

The distinguishing feature of the DTI method is that previous time step values of Z and U are

interpolated at each time step and then computations continue as an initial value problem (Figure 3).

Basis functions are functions of the co-ordinate x and the nodal values are functions of time t.

Global derivatives are therefore of the form

@Z�x; t�
@x
� dc�x�

dx
Z�t�; �11�

@Z�x; t�
@t
� c�x� dZ�t�

dt
: �12�

A one-dimensional isoparametric element is de®ned in which the local co-ordinate x corresponds to

the global co-ordinate x.

The time derivatives are evaluated by a ®nite difference scheme based on an uncentred implicit

formulation. The solution is advanced in time an amount Dt, with the weighted residuals formed

within the spatial domain at t � ti � yDt, where y has a value between 0 and 1.

Nodal values such as Z�t� are evaluated using

Z�t� � Zy � �1ÿ y�Z*� yZi�1; �13�
where Z* is the vector of interpolated nodal values at t � ti and Zi�1 is the vector of nodal unknowns

whose values are sought (at t � ti�1). Global time derivatives are approximated by

@Z�t�
@t
� Zi�1 ÿ Z*

Dt
: �14�

The global set of non-linear algebraic element equations is linearized using the Newton±Raphson

method.9 Iterations are performed simultaneously with those used to solve (6). The global system of

algebraic equations

Sk
gDf

k�1
g � ÿf k

g �15�
is then solved for the vector of corrections to the global nodal values, Dfk�1

g , at the (k� 1)th iteration.

Sk
g is the global tangent stiffness matrix and f k

g is the unbalanced global force vector.
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Having evaluated Dfk�1
g , the previous iteration values fk

g are updated using

fk�1
g � fk

g � Dfk�1
g : �16�

Iterations are performed at each time step, in conjunction with moving the run-up tip and rezoning the

mesh, to successively reduce the value of the components of f k
g . Convergence is assessed by

comparing the sum of the squares of the global unbalanced forces with the value of a preset tolerance.

At the completion of iterations, f k�1
g is the vector of nodal values of Z and U which are the solution to

(1) and (2) at t � ti�1.

5.2. ALE method

This method uses a more sophisticated scheme for moving the nodes in which the co-ordinates

vary continuously within a time step and previous time step values are not interpolated. This is

achieved by treating the basis functions as functions of both space and time. Global time derivatives

are therefore of the form

@Z�x; t�
@t
� c�x; t� dZ�t�

dt
� @c�x; t�

@t
Z�t�; �17�

in which the second term on the RHS arises owing to node movement. Equations (9) and (10) are

therefore modi®ed to�
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The last term on the LHS of (18) accounts for the change in size of the control volume used to

derive (1) and is referred to here as the volume correction term. Similarly, the last term on the LHS of

(19) accounts for the acceleration experienced by the control volume used to derive (2) and is referred

to here as the convection correction term.

Ut
e is the `velocity' of a particle moving along a line of constant x and is given by10

Ut
e�x� �

dx�x; t�
dt
� c�x� dx�t�

dt
: �20�

Equation (2) is integrated numerically using the Euler method to give

U t
e�x� � c�x� x

i�1 ÿ xi

Dt
; �21�

where xi and xi�1 are nodal co-ordinates at t � ti and t � ti�1 respectively.

A feature of the ALE method is that the global time derivatives are independent of the type of ®nite

element approximation used in the spatial domain. In the model described here, the uncentred

implicit formulation that was used with the DTI method is also used with the ALE method.

5.3. STE method

The STE method treats time as an extra spatial dimension. By using two-dimensional

isoparametric elements, the type of co-ordinate transformation used in the spatial domain is

extended to include the time domain. All quantities that are functions of time, including the nodal co-
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ordinates, are transformed in the time domain. Basis functions are functions of both space and time

and the nodal values are constants for each element. Global derivatives are typically of the form

@Z�x; t�
@x
� @c�x; t�

@x
Z; �22�

@Z�x; t�
@t
� @c�x; t�

@t
Z: �23�

As for the DTI and ALE methods, the Newton±Raphson method is used to linearize the element

equations. Only the components of f k and sk that are associated with local nodes at t � ti�1 are

evaluated, since the values of Z and U at t � ti are known and are tested as initial conditions.

6. APPLICATION TO RUN-UP ON A SMOOTH SLOPE

The wave run-up problem shown in Figure 1 was used to demonstrate the deforming mesh along with

the three methods of solving (1) and (2) (Table II). The initial length L equalled 8000 mm and the still

water depth h equalled 520 mm. A sinusoidal water surface time series was speci®ed at the seaward

boundary, representing regular incident waves with wave height H equal to 40 mm and wave period T

equal to 200 s.

The time step Dt was put equal to 1 s. The time-weighting parameter y was put equal to 0�67 so as

to give the highest order of accuracy (second order) achievable with the y-method. A total time of

820 s was modelled.

Details of each mesh are listed in Table III. The ®rst node of each mesh is located at the seaward

boundary and the last node is located at the run-up tip. Mesh B is used with the STE method and

consists of a row of two-dimensional elements de®ned in the space and time domains. Such a mesh is

equivalent to placing two one-dimensional meshes Dt apart in the time domain. The ®rst pair of node

numbers listed in Table III therefore relates to the nodes at t � ti and the second relates to those at

t � ti�1. These co-ordinates are initial values and for subsequent time steps they depend on the node

types, the distance moved by the run-up tip and, if relevant, the value of d.

Computed time series for test NS11 are shown in Figure 4. As expected, there are oscillations

within the ®rst period of motion the transition from zero initial conditions to full periodic motion. The

oscillations decay rapidly and the time series becomes both periodic and smooth. This implies that a

simulation period equal to 4�1T is long enough to demonstrate that the solution is stable. The results

are also in good agreement with the analytical solution of SideÂn and Lynch,11 with the RMS error

equalling just 0�19 mm for 6204 t 4 820 s.

The distribution of nodes is shown in Figure 5. The right-hand edge of the plot is the locus of the

run-up tip. The mesh expands and contracts during uprush and downrush respectively, with the

elements deforming to account for the lateral movement of the run-up tip.

Table II. Test parameters

Test Mesh d �mm� Solution method

NS11 A 4 ALE
NS14 A 0 ALE
NS15 A 4 DTI
NS16 B 4 STE
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Test NS14 was performed to demonstrate the effect of the value of d on node movement. Time

series of the length of element 20, which is located next to the run-up tip, are compared in Figure 6

with those computed in test NS11.

Figure 6 shows that element 20 generally expands and contracts during uprush and downrush

respectively. Because the node at the run-up tip is a type E4 node, its motion is not restricted by the

value of d and so it moves at all time steps. Element 20 is not part of a zone containing type E3 nodes

and so the length of element 20 is constantly changing during both simulations. However, for test

NS11 the other nodes directly attached to element 20 are moved only if the values of d is exceeded

(Figure 2).

Element 20 expands during uprush and then suddenly contracts as the node at the seward end of the

element (node 39) is moved. The opposite occurs during downrush and these both cause the sporadic

variations in element length for test NS11 near t� 650 and 750 s. The effect of using a non-zero value

of d is to restrain an internal node from being moved for one or more time steps and then to suddenly

release it.

Table III. Mesh details

Node no. Node no. Initial co-ord.
(mesh A) (mesh B) (mm) Node type

1 1, 2 0 E1
2 3, 4 200 E2
3±39 5, 6±77, 78 Linearly interpolated E2

40 79, 80 7800 E2
41 81, 82 8000 E4

Figure 4. Time series of elevation of run-up tip (test NS11)
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Figure 5. Space±time plot of mesh deformation (test NS11)

Figure 6. Time series of length of element 20
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A detailed study of the number of recalculations required for each element of the mesh used in tests

NS11 and NS14 was made for one wave period. The results show that placing a tolerance on node

position through the speci®cation of a non-zero value for d reduces computational time without

compromising the accuracy of the solution.

Tests NS15 and NS16 were performed using the DT1 and STE methods respectively (Table II).

The results are in good agreement with the analytical solution of SideÂn and Lynch,11 with the RMS

error for the elevation of the run-up tip equalling just 0�19 and 0�26 mm respectively for

6204 t 4 820 s.

To assess the effect of element deformation on the manner in which (1) and (2) are solved, time

series for individual terms of (9) and (18) are computed for selected nodes. This simply involves

substituting values of Z and U into the unbalanced global force vector at the end of each time step.

Results for test NS11 are shown in Figure 7.

The ALE method accounts for element deformation through the volume correction term. Because

node 39 moves during the period 600 < t < 635 s, the volume correction term is non-zero and the

time series is smooth. This node is also moved to locations where the total water depth h� Z is

similar to that at the previous time step. The term d�h� Z�=dt is therefore small relative to the volume

correction term. Although h decreases with time as the node moves up the slope, the value of Z
increases at a slightly faster rate. The net effect is that d�h� Z�=dt is positive during this period. It is

worth noting that the magnitude of the volume correction term is signi®cant, implying that mesh

deformation has a strong in¯uence on volume (mass) continuity.

Sporadic motion of node 39 occurs during the period 635 < t < 665 s and this causes the spiky

appearance of the time series for both d�h� Z�=dt and the volume correction term. When node 39 is

stationary, the magnitude of the former term increases and the value of the volume correction term

reduces to zero.

To satisfy the continuity requirement of (1), a corresponding ¯ux is required and this is represented

in Figure 7 by the time series of the volume ¯ux term.

Computed time series for test NS16 are shown in Figure 8. This test used the STE method and so

element deformation is accounted for through the isoparametric co-ordinate transformations. This

principal; difference between the STE and ALE methods can be seen by comparing Figures 7 and 8.

With the ALE method a modi®ed time derivative is calculated within the element equations, whereas

Figure 7. Time series of terms of continuity equation at node 39 (test NS11)
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with the STE method the global time derivative is calculated before substitution into the element

equations.10

7. DISCUSSION

The tests presented in this paper show that all three methods of solving (1) and (2) give good results

for wave run-up on a smooth, mild slope. The DTI method uses a purely Eulerian form of (9) and (10)

and therefore allows a ¯uid element formulation derived for a ®xed mesh to be applied, unmodi®ed to

wave run-up. The ALE method gives the user ¯exibility in the choice of time integration, particularly

when a ®nite difference method is desired. Because the STE method uses isoparametric elements

within the time domain, a variable length time step can be introduced without having to modify the

element equations. Although the STE method is potentially quite expensive computationally, this can

be mitigated through the use of the mesh-rezoning scheme described here, which avoids non-essential

recalculations through the judicious choice of node types.

The calculation of time histories of the terms of (1) as demonstrated here as practical application to

the calculation of the forces associated with ¯uid±structure interaction. For example, many one-

dimensional models account for bed roughness through the friction term in the momentum equation.

The approach demonstrated here could be used to evaluate time series of this term and hence the ¯uid

force acting on the seabed. It is also a useful way of checking that the volume (mass) and momentum

conservation requirements of (1) and (2) have been satis®ed.

In principle the model described here could be extended to two dimensions, which would have

practical application to the run-up of obliquely incident waves. Motion of the shoreline would be

represented by a two-dimensional kinematic boundary condition equation. This would be evaluated

using local orthogonal velocities, avoiding the need to determine the local wave direction. The use of

d would be advantageous when dealing with the large number of nodes associated with

multidimensional meshes, since it avoids non-essential node movement.

8. CONCLUSIONS

A novel approach to implementing a deforming ®nite element mesh has been demonstrated. One

advantage of using a constant number of nodes and elements is that the global element matrix does

not need to be restructured at each time step, making the solution method more ef®cient than earlier

Figure 8. Time series of terms of continuity equation at node 39 (test NS16)
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deforming mesh models. The use of a node position tolerance avoids node movement that would

increase computational time without signi®cantly improving the distribution of nodes. Rezone codes

associated with each node type ensure that global derivatives are recalculated only when necessary.

The DTI, ALE and STE methods all give good results for wave run-up on a mild, plane slope. The

calculation of time histories of the terms of the governing equations is a useful way of demonstrating

how the ALE and STE methods account for mesh deformation. It also has practical application to the

calculation of the forces associated with ¯uid±structure interaction and is a useful way of checking

that the volume (mass) and momentum conservation requirements are satis®ed.

The model described here could be extended to two-dimensions, which would have practical

application to the run-up of obliquely incident waves.

APPENDIX: NOMENCLATURE

f k
g global vector of unbalanced forces

g gravitational acceleration

h water depth

H wave height

I time set counter

S element stiffness matrix

t time

U depth-averaged horizontal velocity

Ue element velocity

UR horizontal velocity at run-up tip

x horizontal global co-ordinate

y vertical global co-ordinate

Greek letters

d node position tolerance

Z water surface elevation

Z* local vector of interpolated water surface elevation from previous time step

y time-weighting parameter

r ¯uid density

f local vector of nodal values

o weighting function

O domain of integration
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